Chapter 21 Nonparametric Hypothesis Testing of Ordinal Data Part I

- I. A run test is used to determine randomness based upon order of occurrence.
 - A. To be successful, an experiment often requires data be randomly collected.
 - 1. Inferential statistics often requires data be collected randomly.
 - 2. Quality control, studied in chapter 17, requires defect testing be done to randomly selected items.
 - B. Data studied pertains to a two category variable (male/female, pass/fail, etc.). The number of runs (similar observations) determines randomness. Too many or too few runs causes rejection of the null hypothesis.
 - C. Linda wants an .05 level test to determine whether the gender of people walking into her store is a random event.
 - 1. This gender data was collected from Linda's Saturday morning customers. Runs have been underlined.
 - 2. FFF, MM, FFFF, M, FFFFF, MMMM, F, MMMM, FFFFF, MMMMM, FF, MM, FFF

The sample size of either category is n ₁ .		
The sample size of the other category is n ₂ .		
The number of runs is r. The sampling distribution of r is approximately normal provided the sample size of either category (n_1 or n_2) is beyond 20. If both are \leq 20, tables containing the critical value of r should be used.		
Here are the mean and standard error associated with the sampling distribution of r. $\mu_r = \frac{2n_1n_2}{n_1+n_2} + 1 \qquad \sigma_r = \sqrt{\frac{2n_1n_2(2n_1n_2-n_1-n_2)}{(n_1+n_2)^2(n+n_2-1)}}$		
$z = \frac{r - \mu_r}{\sigma_r}$ The test statistic is r. If z from the test statistic is beyond the critical value of z, the null hypothesis is rejected.		

$$Z = \frac{r - \mu_r}{\sigma_r}$$
 For the .05 level of significance, z is ± 1.96 for this two-tail test.
$$= \frac{13.000 - 21.195}{3.113}$$
 Reject H₀ because -2.63 is beyond - 1.96. Gender of customers walking into Linda's store is not random.

- D. Run tests may be done using the median. Runs consist of consecutive outcomes larger or smaller than the median. Outcomes equal to the median are ignored.
- II. One-tail testing of one sample median using the sign test
 - A. This test is equivalent to a one-tail parametric test of 1 sample mean.
 - B. Data must be at least ordinal in nature and knowledge about the shape of the distribution is not required.
 - C. A (+) sign is assigned to values above the median of interest and a (-) sign to those below the median. Those equal to the median are dropped from the test and n is reduced accordingly.
 - D. Our study of inferential statistics began when Linda became concerned about a drop in the average customer purchase from \$7.75. If Linda does not know the shape of the distribution, she can do a sign test of this year's data against last year's median of \$7.70. Median hourly sale for 7 randomly selected periods will be tested at the .05 level of significance.
 - 1. If the median has decreased, the proportion of (-) signs should be greater than the proportion of (+) signs.
 - 2. H_0 : $p \ge .50$ and H_1 : p < .50 (H_1 must be less-than because this is the change being tested.)
 - a. For small samples, the binomial distribution is used to calculate the probability
 - of the distribution tail (observations beyond the proposed median). b. P (often called π) equals .5, n equals total observations, and x equals
 - b. P (often called π) equals .5, n equals total observations, and x equals observations beyond the proposed median. If the probability of the tail is less than the level of significance (alpha), the null hypothesis is rejected. With a two-tail test, the probability calculation is doubled.
 - 3. Z is appropriate for large samples with p equal to .50 (see section IC of page 94).
 - 4. The p-value approach to hypothesis testing will be used with these sign tests.
 - a. Five median sales figures are below \$7.70 and n is 6 because of a tie.
 - b. The binomial table (ST 1) yields the following: $P(x \ge 5) = .094 + .016 = .11$.
 - c. Accept H₀ as .11 is greater than .05. Chance could have caused these decreases.
 - d. With samples of 6, all must decrease to reject H_o . P(x = 6) = .016 and .016 < .05)

Sample	Median	Sign
1	\$7.65	-
2	\$7.50	-
3	\$8.00	+
4	\$7.60	-
5	\$7.70	0
6	\$7.35	-
7	\$7.55	-